Forgot your password?


To create an account to access your personal
My Account OR Dashboard, click REGISTER below.


New Provider Enrollment

To access on-line enrollment / new provider package, click ENROLL below.




SALL4 Method, Reported in Blood, Could Lead to Advancing Treatment for Blood Disorders

Researchers in the Department of Pathology at Stony Brook University School of Medicine have discovered a laboratory method to expand adult hematopoietic stem cells (HSCs) using the SALL4 gene. Professor Yupo Ma, M.D., Ph.D., Lead Author, and colleagues used this method to produce a more than 10,000-fold increase in HSCs derived from normal human bone marrow. Their findings define a new mechanism of stem cell self-renewal, providing a means to produce large numbers of HSCs that could be used to treat hematological malignancies and other blood disorders. Their results are reported in the early online edition of Blood.

HSCs are rare cells capable of differentiating into all blood cell lineages. These cells are used in clinical procedures to treat various blood diseases, including leukemia and lymphoma, and are central to bone marrow transplantation. Only one in three patients in need of bone marrow transplantation are matched with a suitable donor, and thus many patients die before finding a match. The Stony Brook research team's discovery of using SALL4, which produces a protein that stimulates HSCs to grow, may be a critical first step to finding a treatment based on the expansion of HSCs that could become one alternative to finding a matched donor.

"Investigators have been trying to expand human HSCs for 30 years, but so far there have been only small incremental advances without clinically meaningful results," says Dr. Ma. "We believe our findings are so different from others that this method could open the door to a process that expands HSCs and be used clinically."

The research team, spearheaded by co-author Jerell R. Aguila, Ph.D., devised a way to transfer a stem cell gene (SALL4) into human bone marrow HSCs (CD34+ and CD38-) using a viral delivery system. Once the cells started producing the SALL4 protein, they were exposed to chemical agents known as cytokines, in order to mimic the environment of normal bone marrow.

By using SALL4 transduction methods, Dr. Ma's team of investigators was able to increase the number of HSCs by a factor of 10,000-to-15,000 fold. Subsequently, the team demonstrated that these cells could replace and expand into bone marrow stem cells. The team then successfully transplanted cells from primary recipients and transplant them into a secondary recipient, and from the secondary recipient into a tertiary recipient.

Data presented in the Blood article, titled "SALL 4 is a robust stimulator for the expansion of hematopoietic stem cells," support the conclusion that this new method is far superior to existing approaches. Using the SALL4 transduction methodology, they found HSC expansion consistently resulted in 10,000-to-15,000 fold increases in the cells. Previous methods to expand HSCs have had limited success, with a 160-fold increase achieved by only one of the methods.

Furthermore, no adverse effects were detected in animal models that were monitored for more than 12 months. Dr. Ma's team was also able to eliminate the need for viral delivery of SALL4 by generating a novel recombinant (TAT-SALL4) protein, making it possible to translate their work into the clinical setting.

"The achievement of Dr. Ma and his research team is an important milestone along the road to developing new methods to treat leukemia and lymphoma and may someday be applied to create stem cells from other tissues, including heart, pancreas, and muscle," says Kenneth Shroyer, M.D., Ph.D., Chair of the Department of Pathology at Stony Brook University School of Medicine.

"Ultimately, this method could accelerate the use of stem cell therapies for cancer, as well as a broad range of other diseases," Dr. Shroyer adds.

The study co-authors include: Wenbin Liao, Ph.D., Nabil Hagag, Ph.D., and Lisa Senzel, M.D., Ph.D., of the Department of Pathology at Stony Brook; Cecilia Avila, M.D., of the Department of Obstetrics & Gynecology at Stony Brook, and Jianchang Yang, M.D., Ph.D., of the Nevada Cancer Institute.

The Blood and Marrow Stem Cell Laboratory at Stony Brook University Medical Center provided the cells used in the research, which was supported, in part, by several grants from the National Institutes of Health (NIH).

About Stony Brook University School of Medicine:
Established in 1971, the Stony Brook University School of Medicine includes 25 academic departments centered on education, training, and advancing scientific research. The primary mission of the School is to educate caring and skilled physicians well-prepared to enter graduate and specialty training programs. The school's graduate and specialty training programs are designed to educate medical specialists and investigators in the biomedical and clinical sciences to be well-prepared to advance the frontiers of research, clinical practice and education.
Make An Appointment

Important Note:

The Stony Brook Medicine University Physicians website is primarily an informational and educational resource. It should not be used in place of medical advice and recommendations you receive from your health care provider. If you have, or suspect that you have a medical problem or condition, please seek the advice of your health care provider.

Stony Brook Medicine University Physicians provides marketing advice and consultation to the clinical Faculty associated with the University Faculty Practice Corporations (UFPCs). It does not provide medical care directly or indirectly nor does it oversee, direct, manage or supervise the medical care provided by any of the individual Practices. The individual Practices are responsible for the medical care each Practice provides to its patients. Please note that the Practices listed below are separate University Faculty Practice Corporations (UFPCs).